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Abstract
Common forecasting methods fail to accurately model the nonlinear and time-varying fluctuations of
product demand. Reservoir computing (RC) utilizes a dynamical system to project time-series data
to a higher-dimensional state representation extracting mathematical relations within complex demand
functions. We demonstrate forecasting accuracy of RC on a multivariate product demand dataset.
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1. Introduction

In production and operational management demand forecasting is an important method
as it helps to develop better approximations of future operations under the presence of uncer-
tainty. Forecasting extracts mathematical relations from within past data that can be used to
inform decision making. In supply chain management, efficient coordination of resource acqui-
sition, production and warehousing strongly depends on accurately predicting future product
demand in particular and market dynamics in general. Accurate demand forecasting therefore
reduces investment risks in uncertain environments. The challenges of demand forecasting lie
in the complexity of demand dynamics. In general demand data can be decomposed into deter-
ministic patterns and random fluctuations. While it is impossible to predict random fluctuations
in demand, deterministic patterns can, in theory, be learned or approximated by corresponding
forecasting models.

Among the most commonly applied forecasting methods are exponential smoothing
(ES) (Holt 2004) and the autoregressive integrated moving average (ARIMA) (Hyndman and
Athanasopoulos 2018). These models fit parameters to polynomial functions in order to ap-
proximate the time-dependent demand data. Applications of ES and ARIMA have been shown
for forecasting urban freeway traffic flow (Williams et al. 1998) and electricity demand (Taylor
2003; Ediger and Akar 2007) . While such models work well for demand patterns composed
of few frequency components, due to their fixed mathematical structure their applicability and
accuracy is limited when approximating complex demand patters described by a wide frequency
spectrum and nonlinear patterns (Kohzadi et al. 1996).

As non-explicitly mathematical models, artificial neural networks (ANN) are a powerful
tool to approximate complex nonlinear relations from a set of input variables as to map them
to a target output. Through nonlinear kernel functions ANN create a higher-dimensional
representation of an input signal so that input-output relations become more evident and easier
to approximate. The most commonANN is themulti-layer perceptron (MLP) which passes data
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in a uni-directional way from the input layer to an output layer. Applications of MLP to time
series forecasting have been shown to achieve lower mean squared error than ARIMA (Kohzadi
et al. 1996). However, due to the uni-directional flow of data through the MLP it presents a
memory-less model which has limited applicability to time-series data.

More suitable for time-series data are recurrent neural networks (RNN), which imple-
ment a memory of past data through recurrent connections within the neural network. The
higher-dimensional representation within the RNN is therefore determined by nonlinear com-
binations of data points obtained from a temporal sequence. The main difficulty with RNN is
the training of their parameters known as the vanishing gradient problem, which has limited
the application of RNN to rather simple problems (Bengio et al. 1994). In order to facilitate
training, regularization techniques have been proposed (Hammer and Steil 2002), which impose
constrains for training or limitations to the architecture itself. Such techniques include stability
constrains, automata rules and locally recurrent architectures (with LSTM being the most popu-
lar (Maass et al. 2002)). Under automata rules it has been proposed that a random initialization
of the network has a bias towards a finite memory and good generalization properties (Hammer
and Steil 2002), which implies that training of RNN can be simplified.

In this article we present the application of reservoir computing (RC) (Jaeger 2001;
Maass et al. 2002) to product demand forecasting. RC utilizes a randomly initialized RNN
that implements the mentioned finite memory and generalization. Under these conditions it is
sufficient to reduce training complexity to only a single linear output layer and achieve accurate
forecasting results. The output layer is therefore able to derive a simple linear relationship
between the input data and its projection into a higher-dimensional feature space. The general
suitability of RC to time-series data has already been demonstrated in numerous publications
(Jaeger and Haas 2004; Larger et al. 2012; Sheng et al. 2012). In the following sections we
demonstrate the advantages of RC over common mathematical forecasting models applied to a
complex demand data set.

2. Methodology

2.1. Exponential Smoothing

Exponential smoothing (ES) is a collection of methods that forecast, based on weighted
averages of past observations with exponentially decaying weights as the observations get older
(Holt 2004). This collection offers different methods to forecast, depending if the data contains
trend or seasonal patterns. Simple smoothing (no trend or seasonality) can be expressed in a
recursive way:

ŷt = αyt + (1 − α)`t−1, (1)

where α is the smoothing factor (0 ≤ α ≤ 1), `0 is a parameter for the first fitted value, y is an
observed and ŷ a forecasted value of the series at time t.

When data contains trend or seasonality, additional smoothing equations are considered,
equation 1 will also include new factors. If data presents trend, an equation bt is used, which
considers trend dynamics. For seasonality, depending if patterns change in a constant or
proportional way (Hyndman and Athanasopoulos 2018), an additive or multiplicative equation
st is used. st is configured by a periodicity parameter m, which determines seasonal patterns.
The mentioned equations use smoothing factors β and γ, for trend and seasonality, respectively.
These, in conjunction with α, determine the smoothing level for each function. This determines
how well the model captures patterns present in data.
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Complex data will likely contain trend and seasonal patterns. In this case a combination
of the trend and seasonal equations are used to compute for a number of forecasted steps, with
h been the number of steps into the future. Depending on seasonal characteristics, an additive
or multiplicative equation (st) can be used.

ŷt+h|t = `t + hbt + st+h−m(k+1) (2)
ŷt+h|t = (`t + hbt)st+h−m(k+1) (3)

Equation 2 illustrates a model that considers trend and an additive seasonality, whereas equation
3 shows a multiplicative case. An integer k is used in the form: k = (h − 1)/m to ensure
consistency of the seasonal indices.

2.2. ARIMA

The autoregressive integrated moving average (ARIMA), is the combination of autore-
gressive (AR) and moving average (MA) methods. AR models are constructed according to
the difference between the series and a shifted (lagged) version, of itself. MA methods are con-
structed based on the error between consecutive time intervals. Both methods can be expressed
as a weighted sum of past events. Integrated in this sense means the sum of the coefficients of
the AR and MA models, in the form:

y′t = c + φ1y
′
t−1 + · · · + φpy

′
t−p + θ1εt−1 + · · · + θqεt−q + εt, (4)

where y′t is a differentiated version of the data for time t. Constants c and φ correspond to the
AR model, while εt and θ correspond to the MA model.

The notation used to express the model is: ARIMA(p,d,q), where the values of p,d, and
q, will determine the behaviour of the ARIMA model. The parameters p and q are the number
of steps to consider for the AR and MA models, respectively. In order for ARIMA models to
forecast, data must be stationary (Hyndman and Athanasopoulos 2018). To achieve stationarity
data can be differentiated. Parameter d determines the order of differentiation. Although the
conventional ARIMAmodel only works with non seasonal data, it can be extended to work with
seasonal data by adding 4 more parameters: P,D,Q and m, where the first 3 correspond to the
same parameters as the conventional method. The difference only being that their regressions
are based on a seasonal scale according to the periodicity m. In that context a seasonal ARIMA
model will forecast based on seasonal and non seasonal patterns of the data, with the notation
been: ARIMA(p,d,q)(P,D,Q,M)

2.3. Reservoir Computing

Reservoir computing (RC) is a paradigm that harnesses untrained dynamical systems
(most commonly recurrent neural networks) for computation (Jaeger 2001; Maass et al. 2002).
Basic components of RC are the input layer, the reservoir and the readout layer. The input
layer applies a time-dependent input signal u(t) via a fixed weight matrix Win to the reservoir.
Reservoir nodes (artificial neurons) perform nonlinear computation in order to create a higher
dimensional representation of the applied input signal. Reservoir nodes are connected internally
through a random (untrained)weightmatrixWres that implements recurrent loops allowing input
data to persist within the reservoir and therefore creating a short-term memory. Each node of
the time-dependent reservoir state x(t) evolves according to:

xi(t + 1) = fi
(
Wres

i · x(t) +Win
i · u(t)

)
, (5)
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where Wres
i and Win

i are the ith row vectors of the reservoir weight matrix and the input weight
matrix, respectively. fi is the activation function of node i. The output signal y(t) of the system
is derived by the readout layer through a linear combination of the reservoir states.

y(t) =Wout · x(t) (6)

Assuming good generalization properties of random projections within the reservoir,
learning takes place by adjusting the output weight matrix Wout only. This reduces the training
complexity of recurrent neural networks to the output matrix, which is commonly done by
using simple regression techniques. In general, the recurrent structure of the reservoir repre-
sents a dynamical model that creates features from the time-series data applied to it. RC has
already found widespread application for various types of time-series problems such as speech
recognition (Triefenbach et al. 2014), motor control (Salmen and Ploger 2005), and forecasting
problems (Coulibaly 2010), to name just a few.

2.4. Dataset

Regardless of the forecasting method, the obtainable accuracy will strongly depend
on the dynamics and the complexity of the dataset. In literature it is a common practice to
use simple data with evident patterns (either in trend or seasonality), when trying to explain
the dynamics involved for each method as it’s been shown by (Hyndman and Athanasopoulos
2018). Given the periodic properties of ARIMA (seasonal) and ES, the accuracy with simple
data is expected to be high. However, when dealing with complex data the ability of static
mathematical models to achieve accurate forecasting is questionable. As the aim of this study
is to compare traditional and dynamic forecasting methods for real world applications, a dataset
of a real company containing rich (consecutive) data with non evident patterns will be used.

The dataset corresponds to sales of one of the largest Russian software firms 1C Com-
pany, which was used for the kaggle courseHow to win a data science competition. This dataset
presents daily historical demand data from January 2013 to October 2015 with relevant data
fields of shop ID, item ID, item price, date and number of products sold (per day). As the kaggle
challenge is aimed to forecast future sales for each shop, the data will be prepossessed so that
the aggregate demand for each shop is obtained.

In Figure 1a we can see the aggregate demand for the shop with the most data samples
(shop 31). The shown data highlights that the demand function is composed of various dynamics
with shorter and longer range periodic behaviour. Through an autocorrelation plot (Figure 1b)
we can derive that the data contains a trend, indicated by a decrease on the correlation values,
and seasonality, indicated by the presence of wave like shapes. Peaks every 7 lags suggest that
there are strong weekly patterns. Additionally, through STL decomposition we also determined
that data to contains random fluctuations that will compromise the ability to perfectly predict
future demand.

3. Results

The overall forecasting accuracy of each method will be evaluated based on results
obtained for the aggregate demand of each shop. This requires each forecasting method to
be parameterized as to generalize over the set of independent product demand functions of
each shop. We parameterized ES with two values. The periodicity m commonly refers to the
number of seasons within a given time-series. While the used dataset clearly showed various
temporal fluctuations in mean and standard deviation, no clear seasonality could be determined.
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Figure 1: (a) Aggregate Demand: shop with most samples (shop 31), (b) autocorrelation plot:
with confidence interval of 95%(shaded area), as lags increase, the overall correlation values
decrease, on a waved shaped form, related to trend and seasonality

Table 1: Parameters used for each forecasting method

ES ARIMA RC
Type m p d q P D Q m N β λ Nout k

Additive 7 0-2 0 1 0-2 1 1 7 5000 0.05 0.95 50 15

We therefore empirically determined m to be 7. This corresponds to the auto-correlation plot
(Figure 1b), which shows weekly patterns to be the most dominant. Likewise, as the data
exhibits various seasonalities, we empirically determined the seasonal adjustment method to be
additive (Hyndman and Athanasopoulos 2018). As most of the shops share similar temporal
characteristics, the mentioned parameters were used for all shops. The parameters P, D and Q
for ARIMAwere obtained through grid search and corresponding minimization of the Akaike’s
Information Criterion (AIC) (Hyndman and Athanasopoulos 2018). It was determined that for
most sequences, the parameters were in the range [0, 2]. The periodicity m used to determine
the seasonal component was set in accordance to what was determined for ES. The parameters
influencing the predictive capabilities of RC are the number of artificial neurons (N), input
scaling (β), spectral radius (λ), average in-degree (k) and reservoir output nodes (Nout). N
defines the reservoir’s theoretical memory and computational capacity, β determines the level
of nonlinearity that is exploited within the network, λ sets the length of the fading memory, k
determines the number of incoming connections to each neuron in the reservoir and Nout defines
the number of randomly selected nodes passed from the reservoir to the readout layer. Table 1
summarizes the parameters used for all methods. All experiments where conducted in a Python
environment using the modules stats models (Seabold and Perktold 2010) for the conventional
forecasting methods and Oger (Verstraeten et al. 2012) for reservoir computing.

Error evaluation was done for all methods using Normalized Root Mean Square Error
(NRMSE) between the forecasted and the actual data. Normalization is done by dividing the
RMSE by the target signal’s standard deviation (STD). Considering that STD is sensitive for
sequences of small sample size, we define a minimum sample length n of 100. This value also
corresponds closely to quarterly planning cycles often found in industry. We then performed
forecasting for all shops and calculated the individual NRMSE for each one. As RC initializes
the neural network with random connectivity, we can expect some fluctuations in the RC
results. In order to quantify the stochastic impact of connectivity on RC results, we performed
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Table 2: Forecasting results

Horizon 1 3
Min Max Mean STD Min Max Mean STD

ES 0.58 2.57 1.15 0.33 0.61 2.76 1.17 0.35
ARIMA 0.83 3.16 1.23 0.39 0.84 3.17 1.24 0.40
RC (mean) 0.61 1.48 1.03 0.14 0.68 1.48 1.07 0.14
RC (STD) (0.01) (0.14) (0.01) (0.01) (0.02) (0.12) (0.1) (0.01)
Horizon 7 14
ES 0.62 2.79 1.18 0.36 0.65 3.03 1.21 0.39
ARIMA 0.83 3.19 1.27 0.41 0.86 3.28 1.33 0.44
RC (mean) 0.69 1.59 1.11 0.16 0.75 1.89 1.18 0.22
RC (STD) (0.02) (0.07) (0.01) (0.01) (0.02) (0.06) (0.02) (0.01)

each experiment 10 times with different reservoir initialization. The reported results for RC are
therefore the mean and STD over the repeated experiments. Forecasting accuracy was evaluated
for four different horizons. We define the forecasting a horizon as the number of days we predict
into the future (with respect to the auto-correlation plot the horizon corresponds to the lag
value). Table 2 shows the results obtained considering four different horizons.

From the results in Table 2 it can be observed that conventional methods don’t exhibit
a significant change as the horizon increases. This is due to the fact that these models fit
parameters directly onto the training signal and not to a relation between a training and a target
that is a shifted training signal. Contrary, RC is more sensitive to an increase in the horizon
as can be observed from increasing errors. This sensitivity is the result of the readout layer
of RC trying to fit the dynamic, input-driven reservoir state to a target output function with a
shifted horizon. As can be seen in Figure 1b, with increasing horizon (lag), the autocorrelation
decreases. This implies that with longer horizons more uncertainty is added to the relation
between the reservoir state and the target output. Nonetheless, for up to 14 days horizon,
autocorrelation was still significant and allowed RC to outperform the conventional methods.
While the advantage of RC over the conventional methods (measured through mean and max
results) slightly reduces with increasing horizon, it is noteworthy that it maintained significant
smaller standard deviations. Especially if forecasting is bound to i.e., large investments in
resources and/or production capacities, low STD reduce operational risks. This suggests that
input-driven dynamical systems, such as RC, are more responsive to sudden fluctuations or
regime shifts within the demand function.

In Figure 2 we present two scenarios that help us to better qualify the functional dif-
ferences between the three methods. The first scenario represents the case were ES achieved
the best results across all methods (Figure 2a). The data for this example presented a contin-
uous pattern until mid-December 2014 after which we could observe a temporary increase in
demand. Mid-January the demand returned to its previous pattern. The ES approach, by fitting
its parameters over the full length of the training data, showed little sensitivity to the short-term
demand fluctuations and approximated the test signal accurately. Contrary, the ARIMA model,
by giving higher priority to more recent data and by evaluating shorter sequences, was affected
more strongly by the temporary demand fluctuations. The RC approach, similarly to ES, was
not affected by the fluctuations and predicted accurately as well, which is confirmed by the
qualitative analysis of the match between target and RC output signals.

The second scenario represents a regime shift with resulting significant prediction
errors for ES and ARIMA (Figure 2b). In this example, with the beginning of May 2015
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Figure 2: (a) Case minimum error for ES: with horizon 1, error of 0.58 for ES, 0.68 for RC and
0.98 for ARIMA, (b) Case Regime shift: with horizon 1, error of 0.99 for RC, 2.40 for ES and
3.15 for ARIMA

(which coincided with the beginning of the test signal) we could observe a lasting change in
demand pattern indicated by a different mean and standard deviation of the signal. While ES
and ARIMA are not input-driven models they were completely unaware of the regime shift and
continued to predict according to the demand function of the training signal. Contrary, the
RC adapted to the regime shift. While it could not perfectly capture the dynamics of this new
demand pattern, it could approximate overall trend and scale of the demand to the benefit of
forecasting accuracy.

4. Conclusion

In this work we have shown that forecasting accuracy on sets of time-series with con-
ventional and dynamic methods greatly depends on the complexity of the presented data. When
time-series data can be sufficiently characterized by a single or a few dominant patterns, conven-
tional methods and RC achieve comparable forecasting results. For demand patterns with more
complex behavior, such as temporal fluctuations or sudden regime shifts, conventional methods
fail to accurately forecast due to their static nature. To reduce the overall forecasting error of the
conventional methods would require parameter tuning for each individual time-series as well
as constant re-training as to alleviate the effects of fluctuations or regime shifts. In contrast,
RC as a dynamical system poses a forecasting framework that (a) can achieve lower errors
(with significant lower standard deviation), (b) utilizes a general set of parameters over a range
of time-series and (c) is able to more accurately predict temporal fluctuations and can adjust
to changing demand patterns (regime shifts). Therefore, conventional mathematical methods
create static fits to the actual demand signal, assuming constant repetition of the same pattern.
This is similar to the concept of overfitting of neural networks. RC on the other hand, is not
directly learning the input signal, but the relation between a random projection of that signal
into a feature space and a target output. It harnesses generalization properties of random projec-
tions and memory of the recurrent network structure in order to learn dynamic relations rather
than static sequences. We can therefore conclude that for most complex (real-world) demand
functions dynamical models are preferable as they can more accurately and reliable capture
demand dynamics.
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