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Abstract
Storage location assignment is a dynamic problem due to product lifecycles and time-varying demand
patterns. We demonstrate the impact of demand fluctuations on order picking times for frequency-based
and genetic algorithm-based storage assignment policies. Our results provide the base for developing
re-warehousing strategies to maintain order picking efficiency over time.
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1. Introduction

Order picking, the process of collecting and sorting a set of products according to
customer orders, is the main cost driver in warehouse operations (Tompkins et al. 2010). Some
estimates go as far as assigning 65% of operational costs of warehouses to order picking (Coyle
et al. 1996). Order picking consists of travel between product locations, retrieval of the specific
stock keeping unit (SKU), and sorting of SKUs according to customer orders. Travel is estimated
to contribute approximately 50% of the total order picking costs (Tompkins et al. 2010). In
sum, efforts to reduce warehouse operation costs depend strongly on efficient order-picking.
Reducing order picking time and costs can be achieved through a set of mutually dependent
strategies. Warehouse layout, with the spatial definition of racks and aisles, predetermines the
possibility to optimize travel routes within a warehouse (Bassan et al. 1980). Closely related
are routing strategies that aim to traverse the warehouse as to minimize total travel distance
required to fulfill orders (Roodbergen and Koster 2001). Efficiency of warehouse traversal can
be improved further by order batching (Gademann and Velde 2005). Efficient storage location
assignment policies that take product demand statistics into account can further improve order
picking (Brynzér and Johansson 1996).

While all these order-picking optimizations present valid approaches for any given
moment, they typically do not present insights into the dynamics of warehouse operations.
Having a warehouse inventory consisting of a larger number of products, potentially distributed
across various different product categories, picking efficiency is a time-dependent function.
Due to daily, weekly, monthly, seasonal and yearly demand fluctuations, order picking efficiency
can vary greatly under such time-varying dynamics (Kofler et al. 2015). The recognition of
order picking as a dynamic problem, for the very same reasons as outlined so far, has been
recently addresses by Kofler et al. 2011. For demand patterns obtained over a period of four
months the relation between slotting strategies (turnover, affinity) and optimization strategies (re-
warehousing, healing) was investigated with respect to finding a compromise between picking
efficiency and costs incurred by re-arranging product locations. As the authors mentioned, the
objective was to evaluate the effectiveness of the different strategies, not to evaluate robustness
over a longer period of time.
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In this paper we investigate in more detail the time-dependent dynamics of order picking
efficiency in relation to slotting (or the storage location assignment problem (SLAP)). Based
on a 5 year demand dataset we investigate how picking efficiency is degrading with time for
different slotting policies. Based on a near-optimal storage assignment for an initial period,
we show how time-varying demand fluctuations effect order picking efficiency. In connection
with different picker capacities we show the trade-off between initially optimized solutions and
solutions that are more robust to demand fluctuations.

2. Methodology

2.1. Storage Location Assignment Problem

Storage location assignment searches an order-dependent configuration from a list of
products P = {p1, p2, . . . , pn−1, pn} of length n and is akin to the traveling salesman problem
(TSP). Due to the time complexity of O(n!) of this class of problems, it is not feasible to ex-
haustively search the solution space for an optimal configuration. The TSP has been extensively
studied and while effective search algorithms exist, none of them can guarantee optimality of
the found solutions (Laporte 1992). Similarly, defining a storage location assignment for any
realistic warehouse with n products requires the use of constrained or heuristic search methods
that produce near-optimal solutions in a reasonable amount of time (Quintanilla et al. 2015). To
study order-picking efficiency of a given storage location assignment in response to time-varying
product demand we implement three assignment policies: random slotting, turnover-based slot-
ting and a genetic algorithm based slotting policy. The random assignment is completely
unaware of product demand or product correlations (affinity). The turnover slotting strategy
evaluates product demand over a given period and assigns products to storage locations as a
function of their total demand and their distance to the depot. In theory, this optimizes picking
efficiency as products in highest demand are located closest to the depot. As a third method
we implement a genetic algorithm (GA) for the SLAP. Based on a set of reference orders over
an initial period, the GA tries to optimize the total picking distance, intrinsically taking into
account product turnover and order correlations. As a heuristic it does not guarantee an optimal
solution, but can calculate near-optimal solutions in a reasonable amount of time even for large
numbers of products. The GA implements a set of possible storage locations as chromosomes
with specific products encoded as genes. In such a genetic representation a chromosome rep-
resents a specific permutation of the available genes (products assigned to specific locations).
We initialize the GA with a population size of 30 randomly generated individuals defined by
their chromosomes. The GA then evolves the population for 200 generations through fitness
evaluation, selection, crossover and mutation. According to Mitchell 1998 we use common GA
parameters of 0.9 for the crossover rate and 0.01 for the mutation rate. All parts of the GA were
implemented with python’s deap package (Fortin et al. 2012).

2.2. Warehouse modelling

As the demand dataset in our experiments did not contain information about specific
product details, other than demand, we model the warehouse in a generic manner assuming ho-
mogeneous storage cells and product properties. We define the warehouse as a two-dimensional
grid with storage cells on only one level (no vertical storage). We design the warehouse shape
parameter r with an x/y ratio of 1 (Hall 1993). The basic distance metric in our model, for x
and y dimensions, is a unitless grid cell. Accordingly, each storage cell occupies exactly one
grid cell as well as the picker can move one grid cell at a time. In total the warehouse contains
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(a) Random Policy (b) Turnover Policy (c) GA Policy

Figure 1: (a) Random storage assignment, (b) turnover storage assignment and (c) an instance of the
genetic algorithm storage assignment. Warmer colors indicate products in high demand, cooler colors in
low demand. As the product demand differs by orders of magnitude across products, the color represents
the log demand.

m racks with s storage cells on each side of the rack as to satisfy 2ms ≥ n, which assures that
there are at least as many storage cells as there are products. An illustration of the warehouse
and corresponding storage assignments is shown in Figure 1 for the random, turnover and GA
slotting policies.

2.3. Order picking

For the process of order picking we define a single picker. The picker receives a daily
demand from a set of P products with a total unit demand D. According to the picker capacity
i this order is then split into B batches so that B ∗ i ≥ D. As the used dataset did not contain
information on specific customer orders, but only on daily demandwe randomized the generation
of the batches B and evaluate order picking over the total daily demand D. We model each
product as having equal size and weight and the picker has a capacity to collect i items per
batch (an item is a single unit of a given product demand). In this project we will evaluate order
picking efficiency as a function of picker capacity for i = 100, 250 and 500. When collecting
items, the picker follows a mid-point routing strategy (Hall 1993) and overall order picking
efficiency is measured as average distance per product for any given order list with n products.

2.4. Product demand

The general hypothesis of our presentedwork is that order picking efficiencywill degrade
with time as product demand patterns change due to daily, weekly, monthly, seasonal and/or
yearly fluctuations. To test this hypothesis we use a demand dataset obtained from kaggle.com
(Zhao 2017). This dataset contains product demand for over 5 years for more than 2.100
products across 4 different warehouses. For our analysis of the operations of a single warehouse
we select ”Whse_C” with a total of 244 products. We therefore model a warehouse typical for
manual picking and of the size of a small to medium sized enterprise. The patterns present
in the dataset provide both, temporal and quantitative differences relevant for our analysis as
shown in Table 1. Order frequency ranges from bi-daily to a single time per year with a median
of 99 sales days over a 5 year period. Number of products sold per day ranges from 1 to 81
with a median of 26. Order quantity (unit demand) ranges by several orders of magnitude from
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a single unit up to 33.000 units of a specific product per day. These statistics provide the base
for the time-varying demand patterns affecting efficiency of order picking.

Table 1: Demand statistics

min median max
Product order frequency 4 99 674
Products per day 1 26 81
Unit demand per day 1 1727 33195

3. Results

3.1. Single optimization

As a first reference analysis we have computed order picking efficiency for all three
slotting policies over a five year range with only a single optimization based on an initial 30
days period. The evaluation was done for the three different picker capacities i of 100, 250,
and 500 items and the results of order picking efficiency are shown in Table 2. We can note
that the turnover policy generally performs best for all picker capacities i. The data also shows
that with increasing picker capacity, the advantage of dedicated slotting policies over a random
one becomes smaller. This confirms the results from De Koster et al. 2007 and Lu et al. 2016.
What the table does not clearly illustrate are the changes in order picking efficiency over time.
To better understand the dynamics of picking efficiency we have to look at the time series plots.
In Figure 2 we show order picking efficiency for all three policies with a picker capacity i
= 250. We can point out two conclusions. First, while the picking distance for the random
policy (after an initial period of lower overall demand) does not indicate an apparent long-term
upward or downward trend despite seasonal fluctuations, the turnover and GA policies show
a continuous degradation of picking efficiency. And second, while in average the turnover
policy is preferable, the GA policy showed higher efficiency for the initial period of 30 days.
The difference between initial order picking efficiency between the turnover and GA policies
becomes more pronounced as we increase the picker capacity. For i=100, 250 and 500, the GA
performed 2%, 5.5% and 24% better, respectively. This confirms the assumption that the GA
intrinsically exploits product correlations which has increasing benefits the more products are
picked along a single route.

3.2. Continuous optimization

With single optimization as reference, we now present results for continuous storage
location optimization. Every 30 days we updated product storage locations based on the turnover
and GA policy (as random assignment is not to be optimized we leave this policy out for this

Table 2: Average per product picking distance for different slotting policies and picker capacities.

Capacity = 100 Capacity = 250 Capacity = 500
min mean max std min mean max std min mean max std

Random 8.00 29.27 72.0 7.43 10.00 24.47 74.0 6.35 6.95 21.79 74.0 8.02
Turnover 2.00 18.45 52.0 5.80 2.00 16.91 52.0 5.05 2.00 15.29 52.0 4.95
GA 6.75 20.41 74.0 5.38 7.33 18.57 66.0 5.64 4.00 17.03 70.0 5.88
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Figure 2: Average per product picking distance for different slotting policies and a picker capacity of 250
with single initial optimization.

Table 3: Average per product picking distance for different slotting policies and picker capacities under
continuous optimization

Capacity i = 100 Capacity i = 250 Capacity i = 500
min mean max std min mean max std min mean max std

Turnover 4.00 15.20 48.00 4.07 4.00 14.40 48.00 3.96 4.00 13.07 48.00 4.24
GA 1.78 14.54 23.35 3.08 1.71 13.01 22.64 2.92 1.77 11.81 19.99 3.07

analysis). The results for picking efficiency under continuous optimization is shown in Table 3.
Confirming the results of the initial optimization from the previous section, the GA significantly
outperforms the turnover slotting policy. For all picker capacities the GA exhibits lower mean
and standard deviation in the picking distance per product. We can attribute these results to the
fitness evaluation of the GA. While the turnover policy only takes the summed demand of each
product into account, the GA, based on evaluating fitness through the actual travel distances
for a set of reference orders, implicitly evaluates product demand, demand correlations across
products and the routing strategy as a multi-objective optimization problem. As one can see in
Figure 1 the GA assigns some high demand products further away from the depot. While this
implies frequent longer distances for high demand products, it is offset by placing correlated
products nearby. The time-series plot for continuously optimized storage assignment (with
i = 250) is shown in Figure 3. We can note that with continuous optimization the initial picking
efficiency can be roughly maintained (though subject to seasonality in product demand we
cannot determine a clear trend).

3.3. Sensitivity to demand changes

Based on the two presented results for single and continuous optimizationwe can point to
an important design criteria impacting re-warehousing strategies (while Kofler et al. 2011 made
a distinction between re-warehousing and healing, we use the term re-warehousing in a general
sense where healing is considered an incremental re-warehousing). Under single optimization
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Figure 3: Average per product picking distance for different slotting policies and a picker capacity of 500
with continuous 30 days optimization.

we have seen that the turnover method performs best, if evaluated over a longer period of
time. With continuous optimization the GA (as one example of a heuristic search method)
shows clear advantages independent of how demand patterns change over time. Therefore
warehouse operations are faced with the compromise between efficiency and robustness. The
efficiency obtained with the GA was based on exploiting demand correlations across products
(in accordance with results fromKofler et al. 2011). As order patterns and therefore correlations
change, the GA assignment loses its efficiency. On the other hand, while the turnover policy
did not capitalize on some deeper relations between products, it made the approach more robust
to demand changes. As discussed earlier, the random policy is the only one fully insensitive to
changes in demand patterns, at the expense of being far from efficient, especially for smaller
picker capacities. In Figure 4 we plot the cumulative additional picking distance per product
between single and continuous optimization as an indicator for the sensitivity to changing
demand patterns. For both, the turnover and the GA policy, we see a constant linear increase in
distance per product with the difference that the GA increases at a faster rate due to the larger
difference in optimized and non-optimized performance. It is interesting to note that, while
demand patterns show clear and pronounced seasonal variations in order quantity, the decrease
in picking efficiency follows a very linear function. Under considerations of warehouse specific
re-warehousing costs, re-warehousing strategies and policies can then be derived based on the
picking efficiency baseline (picking distance with continuous optimization), the loss in picking
efficiency (cumulative additional distance) and re-warehousing costs.

4. Conclusion

In this work we analyzed order picking efficiency as a time-dependent function that can
inform re-warehousing policies. The presented time-series plots have shown in much more
detail how changing demand patterns affect order picking efficiency. We have pointed to the
differences in efficiency of different slotting policies as well as their robustness to changes in
demand patterns. The presented insights into optimality and robustness therefore complement
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Figure 4: Cumulative additional distance per product of single initialwarehouse optimization as compared
to continuous optimization. Values in parenthesis are the different picker capacities.

previously published work on the dynamic storage location assignment problem (Kofler et
al. 2011; Kofler et al. 2015). A future aspect is the further complexification of the used
framework. In this work we have reduced complexity of the warehouse model and the picking
process as to study the impact of demand fluctuations and slotting policies on picking efficiency.
We expect that the general conclusions of our study remain valid, but inclusion of further aspects
such as vertical storage, heterogeneous storage cells, different routing strategies, datasets with
different demand patterns, etc. can alter the relative results to some extend. In summary,
re-warehousing strategies will have to be designed around the compromise between optimality
and robustness. In general, we can say that if re-warehousing can be done at relatively low costs
(such as the healing strategy Kofler et al. 2011) than efficiency is preferable over robustness.
If re-warehousing is a costly and disruptive process, one might choose more robust slotting
policies that can maintain a somewhat stable order picking efficiency.
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